

RESERVADO OAQ

Datos	útilos
Daws	umes

Número de Avogadro = $6,02 \times 10^{23}$ 1 atm = $760 \text{ mmHg} = 1,0131 \text{ bar} = 1,01 \times 10^5 \text{ Pa}$ R = 0,082 atm L / K molT (en °C) = T (en K) – 273

P V = n R T 160,5 marcas totales

1. Completa la siguiente tabla: (2,5 marcas totales; 0,25 marcas por cada respuesta correcta)

Átomo (X)	Número atómico (Z)	Masa atómica (A)	Número de protones	Número de neutrones	Número de electrones
¹⁴ C	6	14	6	8	6
⁴⁰ Ar	18	40	18	22	18
²⁰⁷ Pb	82	207	82	125	82

2. Dada la siguiente tabla, donde se informa la temperatura de ebullición de diferentes sustancias:

Sustancia Temperatura de Ebullición	
(a) propano	231
(b) cloruro de metilo	249
(c) acetaldehído	294
(d) acetonitrilo	355
(e) n-octano	399

¿Cuál/es de ellas será/n gas/es a una temperatura de 15°C? (3 marcas totales, 1,5 por cada compuesto)

Propano y cloruro de metilo

(a) el ion tiene carga el		,	marcas)			
(b) el átomo tiene carga	(b) el átomo tiene carga eléctrica mientras que el ion no □					
(c) el átomo y el ion tienen diferente símbolo químico □						
(d) la carga del átomo siempre es más negativa que la del ion \square						
4. ¿Cuál de los siguientes elementos tiene el mayor número de neutrones? (2 marcas)						
(a) $^{112}_{48}Cd$	(b) $^{114}_{47}Ag$ \square	(c) $^{112}_{49}In$ \square	(e) $^{114}_{48}Cd$ \square			
5. Un ejemplo de anhíd	lrido ácido as alt (3	marcas)				
5. On ejempio de anno	ildo acido es el. (3	marcus)				
(a) $\text{LiO}_2 \square$	(b) BaO ₂ \square	(c) $CO_2 \square$	(d) $K_2O_2\square$			
6. El nitruro de litio, ni (3 marcas)	trito de cobre (II) y	sulfato de hierro (III) ti	enen respectivamente las fórmulas	s:		
(a) LiN ₂ , Cu ₃ N ₂ , FeSO ₂	4 □ (b)	Li_3N , $Co(NO_2)_2$, $Fe_2(S_2)$	$SO_4)_3$ \square			
(c) LiN, Cu(NO ₃) ₂ , Fe ₂	$SO_4 \square$ (d)	Li_3N , $Cu(NO_2)_2$, $Fe_2(S_2)$	SO ₄) ₃ ☑			

R	ES	B	۷	A	DO	O	AO

7. La masa total de 12 átomos de carbono es: (3 marcas)	
(a) $2,39 \times 10^{-22} \text{ g} \ \Box$ (b) $144 \text{ g} \ \Box$ (c) $12 \text{ g} \ \Box$ (d) $2 \times 10^{-23} \text{ g} \ \Box$	(e) 1,67 x 10^{-24} g \square
8. La masa de 5 moles de SO ₃ es: (3 marcas)	
(a) $16 \text{ g} \square$ (b) $80 \text{ g} \square$ (c) $400 \text{ g} \boxtimes$ (d) $625 \text{ g} \square$ (e) $5 \text{ g} \square$	
9. Si una muestra de $(NH_4)_2Cr_2O_7$ contiene 8,03 x 10^{23} átomos de nitrógeno tiene la muestra? (5 marcas)	, ¿cuántos gramos de hidrógeno
Si la muestra tiene $8,03 \times 10^{23}$ átomos de nitrógeno, entonces tendrá en mole: Moles de N = $8,03 \times 10^{23}$ átomos de N / $6,02 \times 10^{23}$ átomos/mol = $1,334$ mole.	s de nitrógeno: es
Luego, a partir de la fórmula química del (NH ₄) ₂ Cr ₂ O ₇ se puede ver que hay de N. Por lo tanto:	8 moles de H por cada 2 moles
2 moles de N 8 moles de H 1,334 moles de N x = 5,336 moles de H	
Como A_r H = 1,00795 g/mol, por lo tanto:	
Masa de H = moles de H x A_r H = 5,336 moles x 1,00795 g/mol = 5,378 g	
Masa de hidrógeno =5,378 g 10. Una mezcla de CO ₂ y de SO ₂ tiene una masa de 2,952 g y contiene un	total de 0.0530 moles : Cuántos
moles de SO ₂ hay en la mezcla? (8 marcas)	
Tenemos dos ecuaciones: (1) $m_{CO2} + m_{SO2} = n_{CO2} \times M_{r CO2} + n_{SO2} \times M_{r SO2} = 2,952 \text{ g}$ (2) $n_{CO2} + n_{SO2} = 0,0530 \text{ mol}$ De la ecuación (2) podemos escribir: $n_{CO2} = 0,0530 \text{ mol} - n_{SO2}$	
Reemplazando esta última expresión en (1) tenemos que: $m_{CO2} + m_{SO2} = n_{CO2} \times M_{r CO2} + n_{SO2} \times M_{r SO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M_{r CO2} = (0,0530 \text{ mol} - n_{SO2}) \times M_{r CO2} + m_{SO2} \times M$	$n_{SO2} \times M_{r SO2} = 2,952 g$
Es decir: $(0,0530 \text{ mol} - n_{SO2}) \times 44 \text{ g/mol} + n_{SO2} \times 64,06 \text{ g/mol} = 2,952 \text{ g}$	
Despejando, obtenemos que $n_{SO2} = 0.0309$ mol	

Moles de $SO_2 = ___0,0309__$

Brorn	w	ma	•		a
ncacn	VA.	400	ш	п	ш

11. Cuentas en el laboratorio figura la densidad): magnesic mL). ¿Cuál de estas sustancia	o (1,74 g / mL); sal de m	esa (2,16 g / mL); eta		
(a) agua □ (b) sa	ıl de mesa □	(c) etanol ☑	(d) magnesio \square	
12.¿Cuál es el volumen (en (4 marcas)	mL) de unabarra de n	íquelde5,35 g, si la	densidad del níquel es 8,9	g/mL?
La densidad se puede escrib barra de níquel, entonces el			datos de densidad y de masa	de la
Es decir: $V = 5,35 \text{ g} / 8,9 \text{ g/}$	mL = 0,601 mL			
Volui	nen de la barra de níqu	iel =0,601	mL	
13. Un compuesto de fórmula	AB ₃ contiene 40% en p	eso de A. El peso ató:	mico de A debe ser: (5 marc	cas)
(a) la mitad del de B	(b) igual al de B□	(c) tres vec	es el de B□	
(d) una tercera parte del de B		(e) dos vec	es el de B ☑	
14. La cafeína es un estimula que contiene C, H, O y N. Po mg de H; 0,2887 mg de N y g/mol, determina la fórmula r	r otro lado, se conoce qu 0,1650 mg de O. Si la	e 1,0000 mg de cafeín masa molar de la ca	na contiene 0,4948 mg de C;	0,0515
Primero calculamos el núme $n_C = m_C / A_{rC} = 4,948 \times 10^{-5}$ $n_H = m_H / A_{rH} = 5,15 \times 10^{-5}$ $n_N = m_N / A_{rN} = 2,887 \times 10^{-5}$ $n_O = m_O / A_{rO} = 1,650 \times 10^{-5}$	4 g / 12 g/mol = 4,123 x g / 1 g/mol = 5,15 x 10^{-5} 4 g / 14 g/mol = 2,06 x 1	10 ⁻⁵ mol de C mol de H 0 ⁻⁵ mol de N	cafeína:	
Luego, como el número de elemento con respecto a oxi $n_C / n_O = 4$; $n_H / n_O = 5$; n_N	geno:	co, podemos conocer	la relación de moles de cada	à l
Esto nos da la fórmula C ₄ H ₂	$_5N_2O$, que tiene un M_r de	97 g /mol.		
			0 y 200 g/mol, entonces, a la $C_8H_{10}N_4O_2$, cuyo $M_r = 194$ g	
Fórmu	la molecular de la cafe	na: C ₈ H ₁₀ N	4O ₂	

RESERVADO OAQ

15. De las siguientes reacciones químicas, la única que no está balanceada es: (3 marcas)
(a) $SiO_2 + 2C \rightarrow Si + 2CO \square$
(b) 3 Pb + 8 HNO ₃ → 3 Pb(NO ₃) ₂ + 2 NO + 4 H ₂ O \square (c) 2 Mg ₂ Sn + 8 H ₂ O → 4 Mg(OH) ₂ + 2 SnH ₄ \square (d) 2 NaOH + Sn → Na ₂ SnO ₂ + H ₂ O \square (e) Mg + CH ₃ I → MgCH ₃ I \square
16. Completa la siguiente reacción, marcando con una "X" el compuesto faltante: (3 marcas) 6 HCl + → 2 AlCl ₃ + 3 H ₂ O
(a) $Al(OH)_3 \square$ (b) $Al(OH)_2 \square$ (c) $Al_2O_3 \square$ (d) $AlOH \square$
17. El FeS ₂ ($M_r = 120$ g/mol) reacciona con oxígeno molecular para formar Fe ₂ O ₃ ($M_r = 159,7$ g/mol) y SO ₂ ($M_r = 64$ g/mol).
(i) Escribe la reacción que ocurre, correctamente balanceada. (4 marcas)
$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \rightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$
(ii)La masa de oxígeno molecular requerida para convertir 40 g de FeS₂ en Fe₂O₃ es: (5 marcas) (a) 40 g □ (b) 23 g □ (c) 2,6 g □ (d) 29 g ☑ (e) ninguna de las anteriores □ 18. Un líquido desconocido se evapora completamente (es decir, pasa por completo a la fase vapor o gas) a una temperatura de 100° C y llena un recipiente de 25 mL. Se mide la presión que ejerce el gas y se observa que es de 750 mmHg. Si la masa del gas es 0,0564 g, ¿cuál es la masa molar del líquido desconocido? (8 marcas)
Como todo el líquido pasa a la fase vapor, para conocer la masa molar del mismo primero calculamos el número de moles de gas, con los datos del enunciado. Conocido el número de moles del gas, y dado que la masa del gas es dato, podremos conocer la masa molar del líquido desconocido. T = 100° C = 373,15 K V = 25 mL = 0,025 L P = 750 mmHg = 0,9868 atm
$P \times V = n \times R \times T$, por lo tanto: $n = (P \times V) / (R \times T)$
Reemplazando con los valores de arriba, obtenemos que $n = 8,0625 \times 10^{-4} \text{ mol.}$
Luego, M_r gas = M_r líquido = m / n = 0,0564 g / 8,0625 x 10^{-4} mol = 69,95 g/mol
Masa molar del líquido desconocido =69,95 g/mol

Bron	BWA	no.	01	
RESH	KWA		ш	м

19. ¿En qué condicion	es el volumen molar (es	decir, el volume	en de 1 mol) d	el neón es <u>ma</u> y	vor? (5 marcas)
(a) 0° C y 2 atm □	(b) 273° C y 2 atm □	(c) 127° C y 2	atm □ (d)	127° C y 1 atm	
	sa contiene H_2 , He y N_2 . $0,200$ atm de He y $0,100$				
(a) 0,050 □	(b) 0,100 □	(c) 0,200 □	(d)	0,400 ☑	
	cido nítrico tiene una de esta solución serán nece				
(a) 5 □ (b) 20	☑ (c) 31		(d) 28 □	(e)	3,2 □
22. El volumen de un 69 g de K ₂ CO ₃ es: (5	a solución de K ₂ CO ₃ (M	$M_{\rm r} = 138 \text{ g/mol}$),	cuya concent	tración es 0,20	0 M, y que contiene
(a) 0,400 L □	(b) 200 mL□	(c)1,60 L□	(d)5	500 mL□	(e)2,50 L⊠
L litro de solución y mezclan ambas solucios volúmenes son adi La solución A contie La solución B contie Luego, al mezclar a sufrirán una dilución	poratorio con 2 solucion 10 mL de solución B, cones, ¿cuál es la concentivos. (10 marcas) ene 0,11 moles de NaCleme 0,26 moles de NaCleme 0,26 moles de NaCleme 0,26 moles de NaCleme 0,26 moles soluciones el volumbas soluciones A y B,	en 1 L, por lo tar en 500 mL, por lo blumen total ser total de NaCl	6 moles de N e NaCl en la s nto su concent o tanto su con á 35 mL, po en la soluc	aCl en 500 m solución final? ración molar e acentración mo r lo que amba ión final será	L de solución. Si se Puedes suponer que s 0,11 M. lar es 0,52 M.
$[NaCl]_{total} = [NaCl]_{A}$	$_{,dil}$ + [NaCl] $_{B,dil}$				
$[NaCl]_{total} = 0.11 \text{ M}$	x (25 mL/35 mL) + 0,5	2 M x (10 mL/3	5 mL) = 0.07	786 M + 0,1480	6 M = 0,2272 M
	[NaCl] _{final}	=0,2272]	М М		

RESERVADO OAO

24. Al analizar una muestra de suero sanguíneo, se encuentra que contiene 0,1025 mg de Ca²⁺ por gramo de suero. Si la densidad del suero es 1053 Kg/m³ y la masa atómica del calcio es 40,08 g/mol, ¿cuál es la concentración molar del Ca²⁺ en el suero? (12 marcas)

Se sabe que el suero tiene 0,1025 mg de Ca²⁺ por gramo y se desea expresar dicha concentración en moles de Ca²⁺ por litro de suero.

Primero calculamos los moles de calcio que corresponden a 0,1025 mg: $n_{Ca} = m_{Ca}$ / $M_{r Ca} = 1,025 \times 10^{-4}$ g / 40,08 g/mol = 2,557 x 10⁻⁶ mol de Ca.

Luego, esos moles están contenidos en 1 g de suero, por lo que necesitamos usar el dato de la densidad para conocer el volumen correspondiente:

 $d = m / V = 1053 \text{ Kg} / m^3 = 1,053 \text{ g} / mL$

Entonces, V = m / d = 1 g / 1,053 g/mL = 0,9497 mL

Tenemos 2,557 x 10^{-6} mol de Ca en 0,9497 mL de suero. Entonces, por regla de 3 simple obtenemos los moles de Ca en 1 L (1000 mL) de suero:

0,9497 mL de suero ------ 2,557 x 10^{-6} mol de Ca 1000 mL de suero $x = 2,69 \times 10^{-3}$ mol de Ca

 $[Ca^{2+}] =$ _____2,69 x 10^{-3} _____ M

- **25.** La combustión de C₂H₂ da como productos CO₂ y H₂O. ¿Qué volumen de CO₂, medido a 477° C y 1 atm, puede producirse por la combustión de 1,25 moles de C₂H₂? *(5 marcas)*
- (a) 77 L 🗆
- **(b)** 154 L ☑
- (c) 38.5 L □
- (d) 49 L \square
- **26.** Al hacer reaccionar sodio metálico con agua, se forma hidróxido de sodio e hidrógeno molecular según la siguiente reacción:

$$2 \operatorname{\textit{Na}}(s) + 2 \operatorname{\textit{H}}_2 O(I) \rightarrow 2 \operatorname{\textit{NaOH}}(aq) + \operatorname{\textit{H}}_2(g)$$

Luego, al hacer reaccionar el NaOH formado con cloruro de hierro (III) se forma un precipitado de Fe(OH)3:

$$3 \text{ NaOH}(aq) + \text{FeCl}_3(aq) \rightarrow \text{Fe}(OH)_3(s) + 3 \text{NaCl}(aq)$$

Si se hacen reaccionar 10 g de Na (s) con agua, determina:

(a) El volumen de hidrógeno molecular gaseoso liberado, medido a 298 K y 1 atm. (5 marcas)

RESERVADO OAQ

Si se hacen reaccionar 10 g de Na, entonces están reaccionando 0,4348 moles de Na ($n_{Na} = m_{Na} / A_{r Na}$).
Por estequiometría de la reacción, por cada 2 moles de Na se libera 1 mol de H ₂ , por lo tanto, los moles de H ₂ generados serán 0,2174 mol.
Para conocer el volumen de hidrógeno, aplicamos la ley de gases ideales, conocidas T = 298 K y P = 1 atm: P x V = n x R x T
Reemplazando con todos los datos, se obtiene que V de $H_2 = 5,31$ L.
Volumen de $H_2(g) =5,31 L$
7 Stuffer de 11 ₂ (g) = 5,51 12
(b) La masa de $Fe(OH)_3$ sólido formada $(M_r Fe(OH)_3 = 106,85 \text{ g/mol})$. (9 marcas)
De nuevo, con 10 g de Na están reaccionando entonces 0,4348 moles de Na. Por estequiometría de la primera reacción, se forman entonces 0,4348 moles de NaOH.
De la segunda reacción se ve que para formar 1 mol de Fe(OH) ₃ son necesarios 3 moles de NaOH, entonces por regla de tres simple se pueden obtener los moles de Fe(OH) ₃ formados con 0,4348 moles de NaOH:
3 moles de NaOH 1 mol de Fe(OH) ₃ 0,4348 moles de NaOH $x = 0,145$ moles de Fe(OH) ₃
Luego, la masa de $Fe(OH)_3$ se obtiene de multiplicar esos números de moles por el M_r del $Fe(OH)_3$: m de $Fe(OH)_3 = n \times M_r = 0.145$ mol $\times 106.85$ g/mol $= 15.49$ g

RESERVADO OAO

27. Si se agrega solución de ácido clorhídrico a una muestra de carbonato de calcio sólido, se produce dióxido de carbono según la siguiente reacción:

$$CaCO_3(s) + 2 HCI(aq) \rightarrow CO_2(g) + H_2O(l) + CaCI_2(aq)$$

En el laboratorio se cuenta con un frasco de CaCO₃ (s) con una pureza del 45%. Eso significa que por cada 100 gramos de sólido, solo 45 g corresponden a CaCO₃. Calcula:

(a) El volumen de una solución de HCl 41,3 % m/V necesario para generar 1 kg de CO₂. (8 marcas)

1 kg de CO₂ = 1000 g de CO₂ y con el M_r = 44 g/mol obtenemos 22,727 moles de CO₂ que queremos generar.

Por estequiometría de la reacción necesitamos el doble de moles de HCl, es decir, 45,454 moles de HCl. Estos moles equivalen a 1656,8 g de HCl.

La solución de HCl a utilizar tiene 41,3 g de HCl cada 100 mL de solución, entonces por regla de tres simple podemos obtener el volumen necesario para tener 1656,8 g de HCl:

41,3 g de HCl ----- 0,1 L de solución 1656,8 g de HCl ----- **x** = **4,01** L **de solución**

V de HCl = ____4,01____ L

(b) La masa de CaCO₃ (45% de pureza) necesaria para producir 1 kg de CO₂. (14 marcas)

Queremos obtener nuevamente 22,727 moles de CO_2 . Entonces, por estequiometría de la reacción necesitamos 22,727 moles de $CaCO_3$. Como el M_r de $CaCO_3$ es 100,09 g/mol, esto implica que será necesaria una masa de 2274,75 g de $CaCO_3$.

Del dato de pureza, se sabe que cada 100 g de muestra solo 45 g corresponden a CaCO₃. Por lo tanto, por regla de tres simple podemos obtener la masa de muestra impura necesaria para tener 2274,75 g de CaCO₃:

45 g de CaCO₃ ------ 100 g de muestra 2274,75 g de CaCO₃ ------ **x** = **5055 g de muestra** = **5,055 kg de muestra**

Masa de $CaCO_3 = ____5,055 ____ kg$