

27ª Olimpíada Argentina de Química CERTAMEN NACIONAL — NIVEL INICIAL EXAMEN

Datos útiles Número de Avogadro = $6,02 \times 10^{23}$ 1 atm = $760 \text{ mmHg} = 1,0131 \text{ bar} = 1,01 \times 10^5 \text{ Pa}$ R = $0,082 \text{ atm L / K mol}$ T (en °C) = T (en K) - 273 P V = n R T
1. Una esfera metálica (V = 4/3 π r ³) tiene un diámetro de 30 mm y pesa 0,126 g. ¿Cuál es la densidad del metal en g/cm ³ ?
(a) $1,11 \square$ (b) $8,92 \square$ (c) $8,92 \times 10^{-6} \square$ (d) $0,112 \square$
2. En la tabla periódica, los elementos se distribuyen en orden creciente según su:
(a) Tamaño atómico ☐ (b) Densidad ☐
(c) Número atómico \square (d) Electronegatividad \square
3. El número atómico de un elemento corresponde al número de:
(a) Electrones \Box (b) Nucleones \Box (c) Neutrones \Box (d) Protones \Box
4. El elemento que tiene 10 neutrones más que el elemento ${}^{9}_{4}$ Be es: (a) ${}^{10}_{5}$ B \square (b) ${}^{12}_{6}$ C \square (c) ${}^{27}_{12}$ Mg \square (d) ${}^{19}_{9}$ F \square
5. La carga de una molécula de ozono (O ₃) es:
(a) $0 \square$ (b) $-2 \square$ (c) $-6 \square$ (d) $+2 \square$ (e) $-3 \square$
6. Los iones NO ₂ ⁻ , ClO y PO ₄ ³⁻ se denominan, respectivamente:
(a) nitrato, clorato y fosfito \square (b) nitrito, clorito y fosfato \square
(c) nitrato, hipoclorito y fosfito \Box (d) nitrito, hipoclorito y fosfato \Box
7. Un adulto necesita en promedio 1,70 mg de riboflavina (vitamina B2) al día. ¿Qué cantidad de queso (en Kg) debería consumir en un día si esa fuese la única fuente de vitamina B2 y el queso tuviese 5,5 x 10 ⁻⁶ g de vitamina B2 por gramo de queso?
Cantidad de queso = Kg

27ª Olimpíada Argentina de Química CERTAMEN NACIONAL — NIVEL INICIAL EXAMEN

8. La masa de 1 milimol de $(NH_4)_2HPO_4$ es:	
(a) $132 \text{ g} \square$ (b) $0,114 \text{ g} \square$ (c) $114 \text{ g} \square$ (d) $0,1$	32 g \Box (e) 2 x 10 ⁻²² g \Box
9. ¿Qué tienen en común 15 moles de MgCl ₂ , 30 moles	de NaCl y 10 moles de FeCl ₃ ?
(a) El número de moles de Cl \square	(b) La masa de cloro \square
(c) a y b son correctas □	(d) ni a ni b son correctas \square
	s pesado que un átomo de carbono. Se desea preparar un r cada átomo de "Z", es decir ZC ₄ . ¿Cuántos gramos de ormar ZC ₄ ?
Masa de Z =	g
11. ¿Cuál es la masa (en gramos) de un cubo de oro de	0,5 cm de lado, si la densidad del oro es 19,3 g/mL?
Masa de 1 cubo de oro = _	g

27ª Olimpíada Argentina de Química CERTAMEN NACIONAL — NIVEL INICIAL EXAMEN

				de los cuales son átomos de hierro, 14% átomos e carbono contiene dicha aleación?
(a) 0,049 □	(b) 0,14 g \Box	(c) 0,17 g □	(d) 2,1 g □	(e) 0,024 □
	e O. También			composición del ácido es: 49,3 % de C, 6,9 % de del ácido adípico es de 146 g/mol. ¿Cuál es la
]	Fórmula molecu	ılar:	
14. Se hace rea El óxido que se		etamente 4,8 gra	mos de oxígeno	molecular y 2,8 gramos de nitrógeno molecular.
(a) N_2O	(b) NO □	(c) N ₂ O ₃ □	(d) N_2O_5	
15. Iguala (bal renglones corre		ientes reaccione	s químicas, col	ocando los coeficientes estequiométricos en los
(a) C_3H_8	+O ₂	CO ₂ +	H ₂ O	
(b) Fe_2O_3	+ CO	\rightarrow CO ₂ +	Fe	
(c) Sn +	HNO ₃ -	\rightarrow SnO ₂ +	NO ₂ + _	$_{\rm H_2O}$
¿Cuál podría so	er la identidad d	nsidad de 1,96 g/ lel gas en cuestió (c) CO ₂ \square	n?	ndiciones normales de presión y temperatura). (e) N_2 \square

RESERVADO OAO

olumen (en nuos) ocupa.			
	ría la misma masa de gas a 4,9	98 x 10 Pa y 177° C?	
	V =	L	
	· -	L	
		3112.	
	n (en atmósferas) ejercida por		
a una temperatura de 35° ((a) ¿Cuál es la presió			
		los 0,0020 moles de N_2 ?	

(b) Determina la presión (en atmósferas) ejercida por el O_2 y el número de moles de O_2 en la mezcla gaseosa. Si necesitas conocer la presión ejercida por el N_2 y no pudiste determinarla en el ítem anterior, puedes suponer que la misma vale 0,3 atm.

27ª Olimpíada Argentina de Química CERTAMEN NACIONAL — NIVEL INICIAL FYAMEN

RESERVADO OAQ

20. ¿Cuál es la molari solución?	dad de una solución de H ₂ S	O ₄ que contiene 0,12	moles de ácido por cada 75 mL de		
(a) 1,60 □	(b) $1.6 \times 10^{-3} \square$	(c) 0,16 □	(d) 3,20 □		
21. ¿Cuál de las siguie	ntes soluciones de KMnO ₄ (M	$I_r = 158 \text{ g/mol}$) es la n	nás concentrada?		
(a) $0,100~\mathrm{M}$ de $\mathrm{KMnO_4}$		(b) 1 g de KMnO	(b) 1 g de KMnO $_4$ / L de solución \square		
(c) 100,0 mg de KMnC	O ₄ / mL de solución □	(d) todas tienen la	n misma concentración 🗆		
	g/L. ¿Qué volumen (en cm³		te de una solución de AgNO ₃ cuya ión se requiere para preparar los 500		
	V de $AgNO_3 50 g/L =$		mL		
			nde se planta café en varios países		

23. Para combatir un hongo conocido como "roya" de los lugares donde se planta café en varios países latinoamericanos, se utiliza solución de oxicloruro de cobre, Cu(OCl)₂, de concentración 30 % p/p. ¿Cuál es el % p/p de cobre en dicha solución?

27ª Olimpíada Argentina de Química CERTAMEN NACIONAL – NIVEL INICIAL EXAMEN	KESFKAVNA OVÁ
% p/p de Cu =	
24. El nitrógeno molecular (N ₂) reacciona con el H ₂ para formar amoníaco reacción química balanceada, ¿cuántos moles de H ₂ requerirán 0,150 moles de N	
(a) $0,450 \square$ (b) $0,150 \square$ (c) $0,300 \square$ (d) $3,00$) 🗆
25. El CO ₂ que los astronautas exhalan se extrae de la atmósfera de la nave espa $CO_2 + 2 KOH \rightarrow K_2CO_3 + H_2O$	cial por reacción con KOH:
¿Cuántos kilogramos de CO_2 ($M_r = 44$ g/mol) se pueden extraer con 1 kilogramos	o de KOH ($M_r = 56 \text{ g/mol}$)?
Masa de CO ₂ = Kg	
26. Al hacer reaccionar ácido clorhídrico con carbonato de sodio, ocu neutralización: $2\ HCl\ (aq) + Na_2CO_3(aq) \rightarrow 2\ NaCl\ (aq) + H_2CO_3(aq)$	

27ª Olimpíada Argentina de Química CERTAMEN NACIONAL – NIVEL INICIAL EXAMEN

RESERVADO OAO

¿Qué volumen (en mL) de una solución de HCl 0,110 M reaccionará completamente cor de sodio (M _r = 106 g/mol)?	1 0,237 g de carbonato
20 50010 (1.2 ₁ 100 g/1101).	
Volumen de solución de HCl 0,110 M = m	L
27. Se desea preparar cloro molecular de acuerdo a la siguiente reacción:	
$MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$)
Determina el volumen de HCl concentrado (dens = 1,18 g/mL, 36% p/p) necesario para p	oreparar 100 g de Cl ₂ .
·	1 6 2
V de HCl = mL	
v de iici – iiic	